Optimasi Parameter Otomatis Berbasis Neuro-Fuzzy Hibrida pada Pemodelan Adveksi–Difusi Sistem Reverse Osmosis
DOI:
https://doi.org/10.59086/jti.v5i1.1357Abstract
Numerical modeling based on partial differential equations is widely used in reverse osmosis (RO) systems to represent the mass transport phenomenon in the membrane. The advection–diffusion equation is commonly used, but the accuracy of its numerical solution is highly dependent on the selection of physical and numerical parameters which are generally determined statically, making it less adaptive to changes in operating conditions. This study proposes a Hybrid Neuro-Fuzzy based automatic parameter optimization framework for advection–diffusion modeling in reverse osmosis systems. The RO system is treated as a dynamic system, where the flow rate, diffusion coefficient, and integration limits act as control-sensitive variables. Adaptive Neuro-Fuzzy Inference System (ANFIS) is implemented as an adaptive controller in a closed-loop mechanism, with the error of the numerical solution used as a feedback signal to dynamically update the parameters. Simulation results show that the proposed approach is able to reduce numerical errors, accelerate convergence, and improve system stability compared to static methods. This approach contributes to the development of adaptive control and computational engineering for intelligent and automated reverse osmosis systems.
References
Biesheuvel, P. M., Porada, S., Elimelech, M., & Dykstra, J. E. (2022). Tutorial review of reverse osmosis and electrodialysis. In Journal of Membrane Science (Vol. 647). https://doi.org/10.1016/j.memsci.2021.120221
Fatimah Zahra Al-Gadri, P., Kusumawati, W. I., Harianto, -, & Musayyanah, -. (2023). Penerapan Controlling Auto Light Dimmer Menggunakan Fuzzy Logic Pada Hidroponik Indoor. Techno.Com, 22(2). https://doi.org/10.33633/tc.v22i2.7799
Haefner, M. W., & Haji, M. N. (2023). Integrated Pumped Hydro Reverse Osmosis System optimization featuring surrogate model development in Reverse Osmosis modeling. Applied Energy, 352. https://doi.org/10.1016/j.apenergy.2023.121812
Kumari, S., Agarwal, S., Kumar, M., Sharma, P., Kumar, A., Hashem, A., Alotaibi, N. H., Abd-Allah, E. F., & Garg, M. C. (2025). An exploration of RSM, ANN, and ANFIS models for methylene blue dye adsorption using Oryza sativa straw biomass: a comparative approach. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-87274-3
Maftouh, A., Fatni, O. El, Echchikhi, A., & Rhaleb, H. El. (2023). Experimental and Mathematical Modelling of Reverse Osmosis System to Investigate the Impact of Feed Water Pressure: a Case Study. International Review of Civil Engineering, 14(1). https://doi.org/10.15866/irece.v14i1.21621
Nugraha, Y. T., Cahyadi, C. I., Rida, R., Ningsih, M. S., Sholeha, D., & Roza, I. (2025). Application of the adaptive neuro-fuzzy inference system for prediction of the electrical energy production in Jakarta. IAES International Journal of Artificial Intelligence, 14(3), 1790–1798. https://doi.org/10.11591/ijai.v14.i3.pp1790-1798
Saeed, A., & Alhawaj, M. (2024). Mathematical modeling of reverse osmosis system design and performance. Water Practice and Technology, 19(7). https://doi.org/10.2166/wpt.2024.141
Sholeha, D., & Zambak, M. F. (2022). The Implementasi ANFIS Dalam Prakiraan Perkembangan Energi Baru dan Terbarukan di Indonesia Pada Tahun 2030. Jurnal Sistem Informasi …, 5(2).
Sitompul, H. A., & Sholeha, D. (2025). Integrasi Romberg dan Monte Carlo, Dua Pendekatan Berbeda Untuk Solusi Sistem Reverse Osmosis Pada Media Berpori. In Jurnal Teknologi dan Informas (Vol. 4, Number 3).
Sitompul, Hery Andi, Tarigan, K., Sholeha, D., & Sitompul, Hery Andy. (2025). Impression: Jurnal Teknologi dan Informasi Monte Carlo Implementation on Bisection and Regula Falsi Methods for Finding Multiple Roots of Polynomial and Exponential Equations. In Jurnal Teknologi dan Informas (Vol. 4, Number 2).
Yadav, G. K., Kirar, M. K., Gupta, S. C., & Rajender, J. (2025). Integrating ANN and ANFIS for effective fault detection and location in modern power grid. Science and Technology for Energy Transition (STET), 80. https://doi.org/10.2516/stet/2025013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Muchsin Harahap, Dewi Sholeha, Hery Andi Sitompul

This work is licensed under a Creative Commons Attribution 4.0 International License.
Impression Jurnal Teknologi dan Informasi
Publisher Lembaga Riset Ilmiah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Budi Dharma, Armansyah Parinduri, Sri Rafiqoh, Marnida Yusfiani, Ayu Diana, Jasman Wanfaber Parningotan Saragih, Muchsin Harahap, Analisa Perhitungan Beban Pendingin Ruangan Di Komplek Glamour Mansion Tanjung Morawa Mengunakan Aplikasi Cooling Load Daikin , Impression : Jurnal Teknologi dan Informasi : Vol. 2 No. 1 (2023): Maret 2023
- Hery Andi Sitompul, Kristian Tarigan, Dewi Sholeha, Monte Carlo Implementation on Bisection and Regula Falsi Methods for Finding Multiple Roots of Polynomial and Exponential Equations , Impression : Jurnal Teknologi dan Informasi : Vol. 4 No. 2 (2025): July 2025
- Dewi Sholeha, E-Learning Solusi Pembelajaran Online Pandemi Covid-19 Mahasiswa di Kota Medan , Impression : Jurnal Teknologi dan Informasi : Vol. 1 No. 2 (2022): Juli 2022
- Jumari, Dewi Sholeha, Nani Sri Rezeki, Joslen Sinaga, Kristian Tarigan, Desain dan Penerapan Media Pembelajaran Sistem Monitoring Energi Listrik Berbasis Internet of Things (IoT) Menggunakan ESP32 , Impression : Jurnal Teknologi dan Informasi : Vol. 4 No. 3 (2025): November 2025
- Hery Andi Sitompul, Dewi Sholeha, Integrasi Romberg dan Monte Carlo, Dua Pendekatan Berbeda Untuk Solusi Sistem Reverse Osmosis Pada Media Berpori , Impression : Jurnal Teknologi dan Informasi : Vol. 4 No. 3 (2025): November 2025