Integrasi Romberg dan Monte Carlo, Dua Pendekatan Berbeda Untuk Solusi Sistem Reverse Osmosis Pada Media Berpori

Authors

  • Hery Andi Sitompul Universitas HKBP Nommensen, Medan
  • Dewi Sholeha Universitas Darma Agung, Medan

DOI:

https://doi.org/10.59086/jti.v4i3.1339

Abstract

Sistem reverse osmosis merupakan metode yang sangat populer untuk pemurnian air dengan memanfaatkan aliran air dari pori – pori media yang semi permeabel. Pemodelan matematis untuk sistem ini dilakukan dengan pendekatan persamaan adveksi-difusi berbentuk persamaan diferensial parsial. Dalam persamaan solusi eksak sistem reverse osmosis pada penelitian sebelumnya terdapat bentuk integral tak wajar, dimana integral secara analitik sulit dilakukan. Integrasi secara numerik merupakan pilihahan satu-satunya untuk menyelesaikan integral tersebut. Dalam kajian ini Pendekatan numerik secara deterministik dan stokastik dilakukan untuk menyelesaikan bentuk integral tersebut. Integrasi Romberg orde-10 menghasilkan solusi yang paling optimum untuk solusi persamaan adveksi-difusi pada sistem reverse osmosis.
 
The reverse osmosis system is a very popular method for water purification by utilizing water flow from the pores of a semi-permeable medium. Mathematical modeling for this system is carried out using an advection-diffusion equation approach in the form of a partial differential equation. In the exact solution equation of the reverse osmosis system in previous studies, there is an improper integral form, where integration is analytically difficult to perform. Numerical integration is the only option for solving this integral. In this study, deterministic and stochastic numerical approaches are used to solve this integral form. The 10th order Romberg integration produces the most optimal solution for the advection-diffusion equation in the reverse osmosis system.

References

Adrian G.Wills., T. B. (2023). Sequential Monte Carlo: A Unified Review. Annual Reviews, 159-182. https://doi.org/10.1146/annurev-control-042920-015119

Ahmed Saeed., M. A. (2024). Mathematical modeling of reverse osmosis system design and performance. Water Practice & Technology Vol 19 No 7, 2681-2692. doi: 10.2166/wpt.2024.141

Esteban M.V.M., P. A. (2022). A Comparative Analysis of Statistical Models and Mathematics in Reverse Osmosis Evaluation Processes as a Search Path to Achieve Better Efficiency. Water 2022,14,2485, 1-19. https://doi.org/10.3390/w14162485

Esteban M.V.M., P. A. (2022). Reverse Osmosis Modeling Study of Lead and Arsenic Removal from Drinking Water in Tarija and La Paz, Bolivia. Processes 2022, 10, 1-21. https://doi.org/10.3390/pr10091889

Hadeer K. M., A. F. (2024). Mathematical modeling of osmotic membrane bioreactor process for oily wastewater. Water Science & Technology Vol 90 No 7, 2230-2250. doi: 10.2166/wst.2024.318

Herbert, S. (2022). Quantum Monte Carlo Integration: The Full Advantage Quantum Monte Carlo Integration: The Full Advantage in Minimal Circuit Depth. Quantum 6, 823 (2022)., 823-842.

https://doi.org/10.22331/q-2022-09-29-823

Huliinko S.V., K. Y. (2020). Modern Trends in the Mathematical Simulation of Pressure-Driven Membrane Processes. Journal of Engineering Sciences, Vol. 7(1), F1-F21. doi: 10.21272/jes.2020.7(1).f1

Huliinko S.V., K. Y. (2022). Simulation of Reverse Osmosis Process: Novel Approaches and Development trends. Journal Of Engineering Scinces, Volume 9, Issue 1, F6-F36. doi: 10.21272/jes.2022.9(2).f2

Iqbal M. Batiha., R. S.-N. (2024). Composite Fractional Trapezoidal Rule with Romberg Integration. CMES, 2024, vol.140, no.3, 2729-2745. https://doi.org/10.32604/cmes.2024.051588

Muhammad Abdul Gani., A. U. (2024). Comparison of Numerical Integration with Trapesium and Romberg Methods Using Hypertext Preprocessor Program. GeoScienceEd 5(3) (2024), 425-430. https://doi.org/10.29303/geoscienceed.v5i3.394

Paola A. A.T., E. M. (2023). Mathematical and Statistical Evaluation of Reverse Osmosis in the Removal of Manganese as aWay to Achieve Sustainable Operating Parameters. Membranes, 1-22. https://doi.org/10.3390/membranes13080724

Saloua Helali., A. B.-A. (2013). A Lyapunov-Sylvester numerical method for solving a reverse osmosis model. AIMS Mathematics,9(7), 17531-17554. doi: 10.3934/math.2024852Samad Noeiaghdam., S. M. (2025). A Novel Approach for Improving Reverse OsmosisModel Accuracy: Numerical Optimization for Water Purification Systems. Mathematics, Volume 13, Issue 3 ,MDPI, 1-22. https://doi.org/10.3390/math13030459

Venelin Todorov., I. S. (2019). Quasi-Monte Carlo Methods Based On Sobol And Halton Sequnces For Computation Of Multi Dimensional Integrals Applied In Security Systems . Journal scientific and applied research, vol. 16, 16-22. https://doi.org/10.46687/jsar.v16i1.259

Sitompul, H. A., Tarigan, K., Sholeha, D., & Sitompul, H. A. (2025). Impression: Jurnal Teknologi dan Informasi Monte Carlo Implementation on Bisection and Regula Falsi Methods for Finding Multiple Roots of Polynomial and Exponential Equations. In Jurnal Teknologi dan Informas (Vol. 4, Issue 2).

Downloads

Published

2026-01-24

How to Cite

Andi Sitompul, H., & Sholeha, D. (2026). Integrasi Romberg dan Monte Carlo, Dua Pendekatan Berbeda Untuk Solusi Sistem Reverse Osmosis Pada Media Berpori. Impression : Jurnal Teknologi Dan Informasi, 4(3), 368–374. https://doi.org/10.59086/jti.v4i3.1339