Pengaruh Rasio Sudu Terpancung Berpenampang Segitiga Terhadap Kinerja Turbin Crossflow

Authors

  • Priyo Heru Adiwibowo Universitas Negeri Surabaya
  • Grummy Walianduw Universitas Negeri Surabaya
  • Ika Nurjannah Universitas Negeri Surabaya
  • Aris Purwanto Universitas Negeri Surabaya

DOI:

https://doi.org/10.59086/jti.v4i2.1070

Keywords:

Mikrohidro, Turbin Crossflow, Rasio Sudu Terpancung, Daya, Efisiensi

Abstract

nergi merupakan kebutuhan fundamental bagi kehidupan manusia. Salah satu alternatif energi terbarukan adalah Pembangkit Listrik Tenaga Mikrohidro (PLTMH), yaitu sistem pembangkit skala kecil yang memanfaatkan aliran air. Pada PLTMH, turbin crossflow banyak digunakan, namun memiliki keterbatasan dalam menghasilkan daya. Penelitian ini bertujuan untuk menganalisis pengaruh rasio sudu terpancung berpenampang segitiga terhadap kinerja turbin crossflow poros horizontal. Penelitian ini menggunakan metode eksperimen dengan memvariasikan rasio sudu terpancung  0,2; 0,4; 0,6, dibandingkan dengan sudu v yang tidak terpancung (rasio 1), dan plat datar (rasio 0) pada turbin crossflow poros horizontal. Jumlah sudu yang digunakan adalah 3 yang akan diuji dengan variasi kapasitas air sebesar, 11,024 L/s, 14,322 L/s,  dan 18,113 L/s dengan variasi pembebanan terhadap daya dan efisiensi. Hasil penelitian menunjukkan bahwa daya maksimum diperoleh pada rasio sudu terpancung 0,4 dengan kapasitas aliran 18,113 L/s dan beban 8000 gram sebesar 4,204 Watt. Efisiensi tertinggi dicapai pada rasio sudu terpancung yang sama, yaitu 0,4, dengan kapasitas 11,024 L/s dan beban 5000 gram sebesar 85,77%. Pencapaian ini disebabkan karena pada rasio sudu terpancung 0,4 aliran dapat dimanfaatkan secara lebih optimal sehingga menghasilkan putaran (RPM) yang tinggi serta torsi yang lebih besar.
 
Energy is a fundamental need for human life. One renewable energy alternative is the Microhydro Power Plant (PLTMH), a small-scale power generation system that utilizes water flow. In PLTMH, crossflow turbines are widely used, but have limitations in generating power. This study aims to analyze the effect of the truncated blade ratio with a triangular cross-section on the performance of a horizontal-axis crossflow turbine. This study uses an experimental method by varying the truncated blade ratio of 0.2; 0.4; 0.6, compared to untrimmed v-blades (ratio 1), and flat plates (ratio 0) in a horizontal-axis crossflow turbine. The number of blades used is 3 which will be tested with variations in water capacity of 11,024 L/s, 14,322 L/s, and 18,113 L/s with variations in loading on power and efficiency. The results of the study showed that the maximum power was obtained at a cut-off blade ratio of 0.4 with a flow capacity of 18.113 L/s and a load of 8000 grams of 4.204 Watts. The highest efficiency was achieved at the same cut-off blade ratio, namely 0.4, with a capacity of 11.024 L/s and a load of 5000 grams of 85.77%. This achievement was due to the fact that at a cut-off blade ratio of 0.4 the flow could be utilized more optimally, resulting in high rotation (RPM) and greater torque.
 

References

Anam, D. K., & Adiwibowo, P. H. (2020). EXPERIMENTAL PENGARUH VARIASI JUMLAH SUDU SETENGAH LINGKATAN TERHADAP DAYA DAN EFISIENSI TURBIN CROSSFLOW POROS HORIZONTAL. Jurnal Teknik Mesin, 8(1).

Arifandy, M. I., Cynthia, E. P., Muttakin, F., & Nazaruddin, N. (2021). Potensi Limbah Padat Kelapa Sawit Sebagai Sumber Energi Terbarukan Dalam Implementasi Indonesian Sustainability Palm Oil. Sitekin: Jurnal Sains, Teknologi Dan Industri, 19(1), 116–122.

Arsita, S. A., Saputro, G. E., & Susanto, S. (2021). Perkembangan kebijakan energi nasional dan energi baru terbarukan Indonesia. Jurnal Syntax Transformation, 2(12), 1779–1788.

Brunerová, A., Roubík, H., Brožek, M., Herák, D., Šleger, V., & Mazancová, J. (2017). Potential of tropical fruit waste biomass for production of bio-briquette fuel: Using Indonesia as an example. Energies, 10(12), 2119.

Budiarsyah, G., & Putra, M. A. (2023). Pengaruh Jumlah Sudu Turbin Air Crossflow Terhadap Kinerja Pembangkit Mini Hidro. G-Tech: Jurnal Teknologi Terapan, 7(1), 109–118.

Dewangga, Y. A., Kholis, N., Baskoro, F., & Haryudo, S. I. (2022). Pengaruh Jumlah Sudu Turbin Air Terhadap Kinerja Generator Pembangkit Listrik Tenaga Air. Jurnal Teknik Elektro, 11(1), 71–76.

Fitriana, L., Saputro, H., Purwanto, A., Huda, D. S., & Muslim, Ri. (2025). MATHEMATICS MODELLING AND EXPERIMENTAL STUDY THE EFFECT OF VORTEX WATER TURBINE BLADE DESIGN OF TURBINE EFFICIENCY. Jurnal Rekayasa Mesin, 16(1), 401–414. https://doi.org/10.21776/jrm.v16i1.1899

Indonesia, D. E. N. R. (2014). Outlook Energi Indonesia 2014. Jakarta: Dewan Energi Nasional.

Lubis, S., Lubis, F., & Harahap, P. (2019). PLTB sebagai alternatif energi baru terbarukan. Seminar Nasional Teknik Industri 2019, 4(1).

Mafruddin, M., & Irawan, D. (2018). Pengaruh Diameter Dan Jumlah Sudu Runner Terhadap Kinerja Turbin Cross-Flow. Turbo: Jurnal Program Studi Teknik Mesin, 7(2), 223–229.

Muliawan, A., & Yani, A. (2017). Analisis daya dan efisiensi turbin air kinetis akibat perubahan putaran runner. Sainstek: Jurnal Sains Dan Teknologi, 8(1), 1–9.

Nengsih, S. (2020). Potensi Air Laut Aceh Sebagai Sumber Energi Listrik Alternatif. CIRCUIT: Jurnal Ilmiah Pendidikan Teknik Elektro, 4(2), 81–86.

Nishi, Y., & Inagaki, T. (2017). Performance and flow field of a gravitation vortex type water turbine. International Journal of Rotating Machinery, 2017(1), 2610508.

Prastuti, O. P. (2021). Pengaruh Komposisi Air Laut dan Pasir Laut Sebagai Sumber Energi Listrik. Jurnal Teknik Kimia Dan Lingkungan.

Pritchard, P. J., & Mitchell, J. W. (2016). Fox and McDonald’s introduction to fluid mechanics. John Wiley & Sons.

Purwanto, A. (2025). Pengaruh Penambahan Konsentrasi Oksigen dalam Laminar Premixed Flame dengan Bahan Bakar Metana. Impression : Jurnal Teknologi Dan Informasi, 4(2), 271–277. https://doi.org/10.59086/jti.v4i2.975

Saefudin, E., Kristyadi, T., Rifki, M., & Arifin, S. (2017). Turbin screw untuk pembangkit listrik skala mikrohidro ramah lingkungan. Rekayasa Hijau: Jurnal Teknologi Ramah Lingkungan, 1(3).

Saleh, Z., Apriani, Y., Ardianto, F., & Purwanto, R. (2019). Analisis karakteristik turbin crossflow kapasitas 5 kw. Jurnal Surya Energy, 3(2), 255–261.

Sammartano, V., Morreale, G., Sinagra, M., & Tucciarelli, T. (2016). Numerical and experimental investigation of a cross-flow water turbine. Journal of Hydraulic Research, 54(3), 321–331.

Samsurizal, S., Azzahra, S., Fikri, M., Azis, H., & Yogianto, A. (2021). Prototype Pembelajaran Pemanfaatan Energi Baru Terbarukan Berbasis Energi Surya. TERANG, 4(1), 125–135.

Sritram, P., & Suntivarakorn, R. (2017). Comparative study of small hydropower turbine efficiency at low head water. Energy Procedia, 138, 646–650.

Sugiyono, A. (2016). Outlook energi Indonesia 2015-2035: Prospek energi baru terbarukan. J Energi Dan Lingkung, 12, 87–96.

Ullah, R., Cheema, T. A., Saleem, A. S., Ahmad, S. M., Chattha, J. A., & Park, C. W. (2019). Performance analysis of multi-stage gravitational water vortex turbine. Energy Conversion and Management, 198, 111788.

Downloads

Published

2025-07-30

How to Cite

Adiwibowo, P. H., Walianduw, G., Nurjannah, I., & Purwanto, A. (2025). Pengaruh Rasio Sudu Terpancung Berpenampang Segitiga Terhadap Kinerja Turbin Crossflow. Impression : Jurnal Teknologi Dan Informasi, 4(2), 373–384. https://doi.org/10.59086/jti.v4i2.1070

Issue

Section

Articles