Pengaruh Penambahan Konsentrasi Oksigen dalam Laminar Premixed Flame dengan Bahan Bakar Metana

Authors

  • Aris Purwanto Program Studi S-1 Teknik Mesin, Universitas Negeri Surabaya

DOI:

https://doi.org/10.59086/jti.v4i2.975

Keywords:

Premixed flame, Oksigen, Adiabatic flame temperature, Entropy generation, Laminar flame speed

Abstract

enelitian ini bertujuan untuk mengetahui pengaruh penambahan persentase jumlah oksigen pada laminar premixed flames dengan bahan bakar metana, dengan menggunakan salah satu perangkat lunar 1D yaitu CHEMKIN Pro kami melakukan analisis terhadap laminar flame speed, adiabatic flame temperature dan entropy generation rate. Pada penelitian ini mekanisme GRI 3.0 dipilih karena mekanisme ini sering digunakan untuk memodelkan pembakaran dengan bahan bakar hydrokarbon. Berdasarkan hasil simulasi dengan menggunakan perangkat lunak CHEMKIN Pro, peningkatan konsentrasi oksigen meningkatkan Adiabatic flame temperature, laminar flame speed, dan entropy generation. Berdasarkan hasil simulasi, konsentrasi oksigen sebesar 33% menghasilkan nilai tertinggi untuk suhu nyala adiabatik, laminar flame speed, dan entropy generation. Meskipun demikian, Secara aplikatif, konsentrasi oksigen pada kisaran 26% dapat dianggap sebagai titik kompromi yang relatif aman dan efisien, karena menghasilkan peningkatan kinerja termal tanpa lonjakan entropy generation yang terlalu tinggi. Konsentrasi ini cocok diterapkan pada sistem burner gas.
 
This study aims to determine the effect of increasing the percentage of oxygen on laminar premixed flames with methane fuel, using one of the 1D lunar devices, namely CHEMKIN Pro, we analyzed the laminar flame speed, adiabatic flame temperature, and entropy generation rate. In this study, the GRI 3.0 mechanism was chosen because this mechanism is often used to model combustion with hydrocarbon fuels. Based on the simulation results using CHEMKIN Pro software, increasing oxygen concentration increases Adiabatic flame temperature, laminar flame speed, and entropy generation. Based on the simulation results, an oxygen concentration of 33% produces the highest values for adiabatic flame temperature, laminar flame speed, and entropy generation. However, in practice, an oxygen concentration in the range of 26% can be considered a relatively safe and efficient compromise point, because it results in increased thermal performance without too high a surge in entropy generation. This concentration is suitable for application in gas burner systems.
 

References

Bergthorson, J. M., Goroshin, S., Soo, M. J., Julien, P., Palecka, J., Frost, D. L., & Jarvis, D. J. (2015). Direct combustion of recyclable metal fuels for zero-carbon heat and power. Applied Energy, 160, 368-382. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.09.037

Chen, C.-H., & Li, Y.-H. (2021). Role of N2O and equivalence ratio on NOx formation of methane/nitrous oxide premixed flames. Combustion and Flame, 223, 42-54. https://doi.org/https://doi.org/10.1016/j.combustflame.2020.10.002

Chen, R., Thijs, L. C., Hansen, B. B., Lin, W., Wu, H., Glarborg, P., . . . Mi, X. (2025). Combustion of micron-sized iron particles in a drop tube reactor. Fuel, 383, 133814. https://doi.org/https://doi.org/10.1016/j.fuel.2024.133814

DESIGNS, M. E. (2011). Chemkin-pro. Ansys.

Ge, Y., Ma, H.-H., & Wang, L.-Q. (2024). Experimental and numerical investigation of combustion characteristics of carbon-free NH3/H2 blends in N2O. International Journal of Hydrogen Energy, 49, 510-520. https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.08.187

Glassman, I., Yetter, R. A., & Glumac, N. G. (2014). Combustion. Academic press.

Kee, R. J., Rupley, F. M., & Miller, J. A. (1989). Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics.

Li, G., Zhu, Z., Zheng, Y., Guo, W., Tang, Y., & Ye, C. (2023). Experiments on a powerful, ultra-clean, and low-noise-level swirl-combustion-powered micro thermoelectric generator. Energy, 263, 125825. https://doi.org/https://doi.org/10.1016/j.energy.2022.125825

Li, Y.-H., Pangestu, S., Purwanto, A., & Chen, C.-T. (2021). Synergetic combustion behavior of aluminum and coal addition in hybrid iron-methane-air premixed flames. Combustion and Flame, 228, 364-374. https://doi.org/https://doi.org/10.1016/j.combustflame.2021.02.013

Li, Y.-H., Purwanto, A., & Chuang, B.-C. (2022). Micro-Explosion mechanism of iron hybrid Methane-Air premixed flames. Fuel, 325, 124841. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124841

Lu, M., Long, W., Wei, F., Dong, D., Cong, L., Dong, P., . . . Wang, P. (2024). Assessment of carbon-free fuel ammonia combustion with low methanol blends in reducing GHG emissions including N2O. Journal of Cleaner Production, 463, 142755. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.142755

Nawaz, B., Nasim, M. N., Das, S. K., Landis, J., SubLaban, A., Trelles, J. P., . . . Mack, J. H. (2024). Combustion characteristics and emissions of nitrogen oxides (NO, NO2, N2O) from spherically expanding laminar flames of ammonia–hydrogen blends. International Journal of Hydrogen Energy, 65, 164-176.

Prasidha, W., Baigmohammadi, M., Shoshin, Y., & de Goey, P. (2024). Towards an efficient metal energy carrier for zero–emission heating and power: Iron powder combustion. Combustion and Flame, 268, 113655.

Razus, D., Mitu, M., Giurcan, V., Movileanu, C., & Oancea, D. (2018). Methane-unconventional oxidant flames. Laminar burning velocities of nitrogen-diluted methane–N2O mixtures. Process Safety and Environmental Protection, 114, 240-250. https://doi.org/https://doi.org/10.1016/j.psep.2017.12.026

Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., . . . Gardiner Jr, W. C. (2000). GRImech 3.0 reaction mechanism. Sandia National Laboratory, 20(0), 0.

Turns, S. R. (1996). Introduction to combustion (Vol. 287). McGraw-Hill Companies New York, NY, USA.

Zhang, K., Hu, G., Liao, S., Zuo, Z., Li, H., Cheng, Q., & Xiang, C. (2016). Numerical study on the effects of oxygen enrichment on methane/air flames. Fuel, 176, 93-101.

Bergthorson, J. M., Goroshin, S., Soo, M. J., Julien, P., Palecka, J., Frost, D. L., & Jarvis, D. J. (2015). Direct combustion of recyclable metal fuels for zero-carbon heat and power. Applied Energy, 160, 368-382. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.09.037

Chen, C.-H., & Li, Y.-H. (2021). Role of N2O and equivalence ratio on NOx formation of methane/nitrous oxide premixed flames. Combustion and Flame, 223, 42-54. https://doi.org/https://doi.org/10.1016/j.combustflame.2020.10.002

Chen, R., Thijs, L. C., Hansen, B. B., Lin, W., Wu, H., Glarborg, P., . . . Mi, X. (2025). Combustion of micron-sized iron particles in a drop tube reactor. Fuel, 383, 133814. https://doi.org/https://doi.org/10.1016/j.fuel.2024.133814

DESIGNS, M. E. (2011). Chemkin-pro. Ansys.

Ge, Y., Ma, H.-H., & Wang, L.-Q. (2024). Experimental and numerical investigation of combustion characteristics of carbon-free NH3/H2 blends in N2O. International Journal of Hydrogen Energy, 49, 510-520. https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.08.187

Glassman, I., Yetter, R. A., & Glumac, N. G. (2014). Combustion. Academic press.

Kee, R. J., Rupley, F. M., & Miller, J. A. (1989). Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics.

Li, G., Zhu, Z., Zheng, Y., Guo, W., Tang, Y., & Ye, C. (2023). Experiments on a powerful, ultra-clean, and low-noise-level swirl-combustion-powered micro thermoelectric generator. Energy, 263, 125825. https://doi.org/https://doi.org/10.1016/j.energy.2022.125825

Li, Y.-H., Pangestu, S., Purwanto, A., & Chen, C.-T. (2021). Synergetic combustion behavior of aluminum and coal addition in hybrid iron-methane-air premixed flames. Combustion and Flame, 228, 364-374. https://doi.org/https://doi.org/10.1016/j.combustflame.2021.02.013

Li, Y.-H., Purwanto, A., & Chuang, B.-C. (2022). Micro-Explosion mechanism of iron hybrid Methane-Air premixed flames. Fuel, 325, 124841. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124841

Lu, M., Long, W., Wei, F., Dong, D., Cong, L., Dong, P., . . . Wang, P. (2024). Assessment of carbon-free fuel ammonia combustion with low methanol blends in reducing GHG emissions including N2O. Journal of Cleaner Production, 463, 142755. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.142755

Nawaz, B., Nasim, M. N., Das, S. K., Landis, J., SubLaban, A., Trelles, J. P., . . . Mack, J. H. (2024). Combustion characteristics and emissions of nitrogen oxides (NO, NO2, N2O) from spherically expanding laminar flames of ammonia–hydrogen blends. International Journal of Hydrogen Energy, 65, 164-176.

Prasidha, W., Baigmohammadi, M., Shoshin, Y., & de Goey, P. (2024). Towards an efficient metal energy carrier for zero–emission heating and power: Iron powder combustion. Combustion and Flame, 268, 113655.

Razus, D., Mitu, M., Giurcan, V., Movileanu, C., & Oancea, D. (2018). Methane-unconventional oxidant flames. Laminar burning velocities of nitrogen-diluted methane–N2O mixtures. Process Safety and Environmental Protection, 114, 240-250. https://doi.org/https://doi.org/10.1016/j.psep.2017.12.026

Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., . . . Gardiner Jr, W. C. (2000). GRImech 3.0 reaction mechanism. Sandia National Laboratory, 20(0), 0.

Turns, S. R. (1996). Introduction to combustion (Vol. 287). McGraw-Hill Companies New York, NY, USA.

Zhang, K., Hu, G., Liao, S., Zuo, Z., Li, H., Cheng, Q., & Xiang, C. (2016). Numerical study on the effects of oxygen enrichment on methane/air flames. Fuel, 176, 93-101.

Downloads

Published

2025-07-28

How to Cite

Purwanto, A. (2025). Pengaruh Penambahan Konsentrasi Oksigen dalam Laminar Premixed Flame dengan Bahan Bakar Metana. Impression : Jurnal Teknologi Dan Informasi, 4(2), 271–277. https://doi.org/10.59086/jti.v4i2.975

Issue

Section

Articles