Prakiraan Produksi Energi Listrik PLTA di Sumatera Utara Menggunakan Adaptive Neuro-Fuzzy Inference System (ANFIS)
DOI:
https://doi.org/10.59086/jti.v4i3.1269Keywords:
Prediksi energi listrik, logika fuzzy, jaringan saraf tiruan, forecasting.Abstract
The electricity demand in North Sumatra continues to fluctuate along with population growth and industrial development, so accurate electricity consumption planning is essential to maintain supply reliability. This study applies the Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict electricity consumption in the North Sumatra region using historical data for the 2018–2024 period. Actual data is compared with the model's prediction results to evaluate accuracy using the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) indicators. The evaluation results show an MAE value of 0.00057, RMSE of 0.00139, and MAPE of only 0.00012%, indicating a very small level of prediction error. Projections until 2029 show a trend of electricity consumption that tends to increase again after experiencing a decline in 2022–2023, with a significant spike in 2024. This indicates that ANFIS is able to follow historical patterns well and provide precise and reliable forecast results. Thus, the ANFIS method can be used as a basis for short-term energy planning to support efficient and sustainable electricity supply strategies in North Sumatra.
References
Karaeng, C. T., Iswandi, I., Firman, F., & Nuzul, M. (2019). Analisis Kinerja Boiler Pada PLTU Unit 1 PT. SEMEN Tonasa. Jurnal Teknik Mesin Sinergi, 11(1). https://doi.org/10.31963/sinergi.v11i1.1098
Miqrad, S. (2021). Analisis Efisiensi Penggunaan Energi Listrik Dengan Audit Energi. Jurnal Teknik Elektro Universitas Tanjungpura, 1(3).
Nugraha, Y. T., Cahyadi, C. I., Rida, R., Ningsih, M. S., Sholeha, D., & Roza, I. (2025). Application of the adaptive neuro-fuzzy inference system for the prediction of the electrical energy production in Jakarta. IAES International Journal of Artificial Intelligence, 14(3), 1790–1798. https://doi.org/10.11591/ijai.v14.i3.pp1790-1798
Nugraha, Y. T., Fitra Zambak, M., & Hasibuan, A. (2020). Perkiraan Konsumsi Energi Listrik di Aceh pada Tahun 2028 Menggunakan Adaptive Neuoro Fuzzu Interference System (Vol. 5, Issue 1).
Nugraha, Y. T., Ghabriel, K., & Dharmawan, I. F. (2021). Implementasi ANFIS Dalam Prakiraan Konsumsi Energi Listrik Di Kota Medan Pada Tahun 2030. Universitas Prima Indonesia Jl. Sekip, Simpang Sikambing Medan, 4578890(061). https://doi.org/10.30596/rele.v4i1.7826
Nugraha, Y. T., Simanjuntak, P. M., Irwanto, M., Rida, R., & Othman, M. A. (n.d.). ANALYSIS OF FORECAST OF RENEWABLE ENERGY DEVELOPMENT IN NORTH SUMATRA USING ANFIS. Jurnal Media Elektro. https://doi.org/10.35508/jme.v13i1.15310
Setyoko, P., & Luthfie, A. A. (2022). Analisis Kadar Gas Emisi Co-Firing Pada Boiler PLTU Indramayu Menggunakan Campuran Sawdust. Jurnal Teknik Mesin, 11(3).
Sholeha, D., & Zambak, M. F. (2022). The Implementasi ANFIS Dalam Prakiraan Perkembangan Energi Baru dan Terbarukan di Indonesia Pada Tahun 2030. Jurnal Sistem Informasi …, 5(2).
Zayyinun, A., & Widyartono, M. (2020). Prototipe Mesin Stirling Menggunakan Panas Sinar Matahari Sebagai Energi Alternatif. Teknik Elektro, 09(2).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wisnu Alqadri Wardana, Mawardi, Yoga Tri Nugraha, Sari Novalianda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Impression Jurnal Teknologi dan Informasi
Publisher Lembaga Riset Ilmiah

This work is licensed under a Creative Commons Attribution 4.0 International License.