Penentuan Strategi Peramalan Volume Barang Kiriman outgoing PT Pos Indonesia (Persero) KCU Purwokerto
DOI:
https://doi.org/10.59086/jti.v4i3.1213Keywords:
Forecasting, ARIMA, Kiriman outgoing, keterlambatanAbstract
Outgoing shipment management is a crucial aspect in maintaining the smooth distribution process at POS Purwokerto Branch. Based on internal data, the average delay (overtime) in shipments reached 3.56% of the total shipment volume from September 2024 to September 2025. Therefore, a data analysis-based planning system is needed through forecasting the volume of outgoing shipments so that the company can anticipate spikes in demand and optimize fleet and workforce capacity. Forecasting uses a time series approach with the Naïve, Moving Average, Single Exponential Smoothing, and Autoregressive Integrated Moving Average (ARIMA) methods. The test results show that the ARIMA (2,1,1) model is the best model with the smallest error rate, namely a Mean Absolute Deviation (MAD) of 1867.87, a Mean Squared Error (MSE) of 7846634.40, and a Mean Absolute Percentage Error (MAPE) of 7.001% and is in accordance with historical demand data patterns. The forecast results provide an accurate reference for management in managing fleet capacity, distribution scheduling, and workforce allocation so as to minimize delivery delays due to imbalances between capacity and workload and increase the efficiency and sustainability of the company's operations in the future.
References
Barry Render, J. H. (2001). Prinsip-Prinsip Manajemen Operasi. Salemba Empat.
Christopher, M. (2016). Logistics & Supply Chain Management (5th ed.). Pearson Education Limited.
Dadang Surya Kencana, Sipon Al Munir, Y. P. M. (2025). Pengaruh Sistem Pelacakan Online dan Ketepatan Waktu Pengiriman terhadap Kepuasan Pelanggan. JURNAL LENTERA BISNIS, 14(2), 2926–2939. https://doi.org/10.34127/jrlab.v14i2.1760
Gujarati, D. N., & Porter, D. C. (2009). Basic Econometrics (5th ed.). McGraw-Hill,Inc.
Herjanto, E. (2007). Manajemen Operasi (Edisi 3). Grasindo.
Iriawan, N., & Astuti, S. P. (2006). Mengolah Data Statistik dengan Mudah Menggunakan Minitab. Andi Offset.
Jacobs, F. R., & Chase, R. B. (2016). Operations and Supply Chain Management (14th ed.). McGraw-Hill Education.
Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting: Methods and Applications (3rd ed.). John Wiley & Sons.
Maqbulla Arochman, M. T. (2021). Pengaruh Kualitas Layanan terhadap Keinginan Berpindah Pengguna Jasa Layanan Rumah Kos di Jatimulyo Malang dengan Kepuasan Pelanggan sebagai Variabel Mediating. Jurnal GeoEkonomi ISSN-Elektronik, 12(1), 17–24. https://doi.org/doi.org/10.36277/geoekonomi
Mulyono, S. (2000). Peramalan Bisnis. Liberty.
Nachrowi, N. D., & Usman, H. (2004). Pendekatan Populer dan Praktis Ekonometrika untuk Analisis Ekonomi dan Keuangan. embaga Penerbit Fakultas Ekonomi Universitas Indonesia.
Nasapi, A., Surarso, B., & Cahyo, B. N. (2014). Analisis Peramalan Permintaan untuk Mengurangi Risiko Ketidaktepatan Inventory pada Perusahaan Distribusi. Jurnal Teknik Industri, 15(2), 101–110.
Nasution, M. N., & Prasetyawan, Y. (2008). Manajemen Transportasi. Ghalia Indonesia.
Nevi Fitria Aini, Deden Darmansyah, Rahmad Apriyono, Ramdhani, Y., & Prastyo. (2025). Literature Review: Faktor-Faktor yang Mempengaruhi Kepuasan Pelanggan dalam Layanan Pengiriman Barang. Journal of Management and Innovation Entrepreunership (JMIE), 2(4), 2305–2314.
Octora, R., & Kuntoro, H. (2013). Peramalan Deret Waktu dengan Model ARIMA. Penerbit Andi Offset.
Rahmayani, R., Handayani, S., Telaumbanua, A., Fitrah, A., & Rayhan, M. (2025). Peramalan terhadap permintaan pengiriman barang di PT. Khan Trans Indonesia menggunakan metode Moving Average & Exponential Smoothing periode Januari 2025. NNOVATIVE: Journal of Social Science Research, 5(1), 5295–5310.
Ritzman, L. P., Krajewski, L. J., & Malhotra, M. K. (2013). Foundations of Operations Management (8th ed.). Pearson Education.
Rushton, A., Croucher, P., & Baker, P. (2017). The Handbook of Logistics and Distribution Management (6th ed.). Kogan Page.
Sinulingga, S. (2013). Metode Penelitian untuk Teknik Industri. Graha ilmu.
Wei, W. W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods (2nd ed.). Pearson Addison Wesley.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Cindy Dwi Novita Sari, Ratih Windu Arini, Cindy Malinda Uscha

This work is licensed under a Creative Commons Attribution 4.0 International License.
Impression Jurnal Teknologi dan Informasi
Publisher Lembaga Riset Ilmiah

This work is licensed under a Creative Commons Attribution 4.0 International License.