Pemodelan Probabilistik Risiko Kegagalan Kolom Struktur Bangunan Sekolah di Zona Sesar Aktif Berdasarkan Data Terbuka GEM dan InaRisk

Authors

  • Aziz Ferdiansyah Universitas Al-Azhar Medan
  • Wan Daffa Abdilla Universitas Al-Azhar Medan
  • Nazmi Aprilla Wibowo Universitas Al-Azhar Medan
  • Zalfa Ramadhansyah Universitas Al-Azhar Medan
  • Khairul Uma Universitas Al-Azhar Medan

DOI:

https://doi.org/10.59086/jti.v4i3.1168

Keywords:

GEM, InaRisk, Gempa Bumi, Gagal Kolom, Kolom Struktural

Abstract

Indonesia merupakan negara dengan tingkat aktivitas gempa yang sangat tinggi, dengan ribuan kejadian setiap tahunnya. Bangunan sekolah menjadi salah satu infrastruktur yang paling rentan, terutama bangunan lama yang belum mengikuti standar ketahanan gempa terbaru (SNI 1726:2019). Kolom sebagai elemen utama penopang beban vertikal sering menjadi titik awal keruntuhan, sehingga analisis terhadap kemungkinan kegagalannya sangat penting. Penelitian ini memodelkan probabilitas kegagalan kolom (P_fail) pada sekolah-sekolah yang berada di dekat zona sesar aktif menggunakan pendekatan probabilistik berbasis data terbuka. Tiga sumber data utama digunakan, yaitu peta percepatan tanah maksimum (PGA) dari GEM, indeks risiko regional dari InaRisk BNPB, serta data spasial dan karakteristik bangunan sekolah dari Dapodik. Seluruh informasi tersebut digabungkan dalam Sistem Informasi Geografis (GIS) untuk menghitung percepatan spektral (Sa), kapasitas kolom, dan P_fail melalui fungsi kerentanan log-normal dan simulasi Markov-Chain Monte Carlo (MCMC). Hasilnya menunjukkan bahwa sekolah di wilayah dengan PGA tinggi dan jumlah siswa besar memiliki risiko kegagalan kolom yang lebih besar. Risiko tersebut diterjemahkan menjadi skor prioritas retrofit yang dipetakan secara nasional. Integrasi tiga dataset terbuka ini menghasilkan model spasial-probabilistik yang berfokus pada elemen kolom dan memberikan kontribusi penting bagi mitigasi risiko gempa pada sektor pendidikan.
 
Indonesia is a country with a very high level of seismic activity, with thousands of events occurring each year. School buildings are among the most vulnerable infrastructure, especially older buildings that do not comply with the latest earthquake resistance standards (SNI 1726:2019). Columns, as the main elements supporting vertical loads, are often the starting point for collapse, so analyzing the possibility of their failure is very important. This study models the probability of column failure (P_fail) in schools located near active fault zones using an open data-based probabilistic approach. Three main data sources were used, namely the maximum ground acceleration (PGA) map from GEM, the regional risk index from InaRisk BNPB, and spatial data and school building characteristics from Dapodik. All of this information was combined in a Geographic Information System (GIS) to calculate spectral acceleration (Sa), column capacity, and P_fail through log-normal vulnerability functions and Markov-Chain Monte Carlo (MCMC) simulations. The results show that schools in areas with high PGA and large numbers of students have a greater risk of column failure. This risk is translated into a retrofit priority score that is mapped nationally. The integration of these three open datasets produces a spatial-probabilistic model that focuses on column elements and makes an important contribution to earthquake risk mitigation in the education sector.

References

W. Erlangga, M. Teguh, M. Mushthofa, I. Trianggoro Saputro, and G. Setiadi, “Sebaran Gempa Utama Berdasarkan Magnitudo Dan Kedalaman Di Wilayah Mamuju Dan Sekitarnya,” Teknisia, vol. 27, no. 2, pp. 122–131, 2022, DOI: 10.20885/teknisia.vol27.iss2.art6.

H. Rakuasa and Y. Pakniany, “Assessing the Probability of Megathrust Earthquakes in Indonesia: A Review of Seismic Hazard Assessment and Mitigation Strategies,” Sci. Nat. J. Loomingulisus ja Innov., vol. 1, no. 3, pp. 98–116, 2024, doi: 10.70177/innovatsioon.v1i3.1275.

R. Nanlohy, Yonlib & Wattimanela, Henry & Djami, Ronald & Latupeirissa, Sanlly & Laamena, Novita & Salhuteru, “Penerapan Program Pintar Statistik dengan Menggunakan Software Minitab pada SMA Negeri 8 Ambon,” Bakti J. Pengabdi. Kpd. Masyarakat., vol. 3, no. 2, pp. 110–116, 2024, doi: 10.51135/baktivol3iss2pp110-116

M. Nazif, M. Sobaih, and S. Khalifa, “A Seismic Risk Evaluation Method for School Buildings,” Fayoum Univ. J. Eng., vol. 7, no. 2, pp. 285–294, 2024, doi: 10.21608/fuje.2024.344957.

G. Giacomin, M. Bressan, V. de Martino, and F. Tomaro, “Case study of structural reinforcement of a masonry building,” Procedia Struct. Integr., vol. 44, no. 2022, pp. 610–617, 2022, doi: 10.1016/j.prostr.2023.01.080.

O. Coskun et al., “Seismic risk prioritization of masonry building stocks using machine learning,” Earthq. Eng. Struct. Dyn., vol. 53, no. 14, pp. 4432–4450, 2024, doi: 10.1002/eqe.4227.

E. A. Opabola and C. Galasso, “Informing disaster-risk management policies for education infrastructure using scenario-based recovery analyses,” Nat. Commun., vol. 15, no. 1, 2024, doi: 10.1038/s41467-023-42407-y

Y. Yani, M. Tusam, D. Larasaty, and N. Isnaini, “Mapping Schools Vulnerability to Earthquakes: Case Study of Cianjur Earthquake 21 November 2022,” E3S Web Conf., vol. 600, no. November 2022, pp. 0–9, 2024, doi: 10.1051/e3sconf/202460002007.

B. Raihanda and Abdullah, “The damage effect on the structural capacity of school building columns due to tsunami inundation in Banda Aceh city after 16 years,” E3S Web Conf., vol. 340, pp. 0–5, 2022, doi: 10.1051/e3sconf/202234002004.

A. Rudman, J. Douglas, and E. Tubaldi, “The assessment of probabilistic seismic risk using ground-motion simulations via a Monte Carlo approach,” Nat. Hazards, vol. 120, no. 7, pp. 6833–6852, 2024, doi: 10.1007/s11069-024-06497-1.

Downloads

Published

2025-11-30

How to Cite

Ferdiansyah, A., Daffa Abdilla, W., Aprilla Wibowo, N., Ramadhansyah, Z., & Uma, K. (2025). Pemodelan Probabilistik Risiko Kegagalan Kolom Struktur Bangunan Sekolah di Zona Sesar Aktif Berdasarkan Data Terbuka GEM dan InaRisk. Impression : Jurnal Teknologi Dan Informasi, 4(3), 511–520. https://doi.org/10.59086/jti.v4i3.1168