Analisis Termodinamika dan Perpindahan Panas berbasis Computational Fluid Dynamics (CFD) untuk Optimisasi Anneling Furnace Aluminium Foil

Authors

  • Bagus Setyo Widodo ITN Malang
  • R. A. Wahyuono Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.59086/jti.v4i3.1009

Keywords:

Aluminum foil annealing, CFD, Coolant oil, Thermal distribution, Furnace optimization

Abstract

Penelitian ini memecahkan masalah cacat wettability dan adhesi pada aluminium foil 6.5 μm pasca-annealing melalui optimasi berbasis CFD dan eksperimen. Simulasi termofluida 4 Foil Annealing Furnace (FAF) mengungkap distribusi suhu tidak homogen di FAF III (ΔT = 5 K) dan FAF IV (ΔT = 2 K). Analisis beban furnace menunjukkan kelebihan kapasitas pada FAF IIIB (64 roll) dan FAF IV (45 roll), sehingga direkomendasikan reduksi menjadi 52 dan 30 roll (rasio aluminium : udara ≤ 23%). Eksperimen lab menentukan area density minyak pelumas 0.000104 kg/m² dan laju penguapan 0.2431 kg/jam. Hasil integrasi dengan analisis termodinamika merekomendasikan penambahan waktu holding 4–8 jam (FAF I/II) dan 1 jam (FAF III/IV). Implementasi rekomendasi meningkatkan kualitas foil hingga 98% sesuai standt pharmaceutical grade.
 
This study solves the problem of wettability and adhesion defects in 6.5 μm post-annealing aluminum foil through CFD-based optimization and experimentation. Thermofluid simulations of 4 Foil Annealing Furnace (FAF) revealed inhomogeneous temperature distributions in FAF III (ΔT = 5 K) and FAF IV (ΔT = 2 K). Furnace load analysis showed excess capacity at FAF III (64 rolls) and FAF IV (45 rolls), so it was recommended to reduce it to 52 and 30 rolls (aluminum : air ratio ≤ 23%). Lab experiments determined the area of lubricant density of 0.000104 kg/m² and the evaporation rate of 0.2431 kg/h. The results of the integration with thermodynamic analysis recommended an additional holding time of 4–8 hours (FAF I/II) and 1 hour (FAF III/IV). The implementation of recommendations improves the quality of foil by up to 98% according to the pharmaceutical grade standt.

References

Annisa Kesy Garside. (2005).“Penentuan Setting Parameter Proses Finishing Rolling untuk Aluminium Foil dengan Thickness Exit 7 Μikron di PT. Supra Aluminium Industri.” Laporan Magang Dosen, Program Hibah A1, Jurusan Teknik Industri – FT, Universitas Muhammadiyah Malang,.

Wibowo, A.T.H., Wahyuono, R.A., Nugroho, G. (2013). Studi Numerik Pengaruh Geometri dan Desain Diffuser untuk Peningkatan Kinerja DAWT (Diffuser Augmented Wind Turbine). Jurnal Teknik Mesin Vol. 14, No. 2, 90-96. DOI: 10.9744/jtm.14.2.90-96

Faisal, M., et al. (2017). Peningkatan Kualitas Monitoring Proses Produksi Aluminium Foil: Evaluasi Kinerja Furnace dengan Computational Fluid Dynamics dan Kualitas Proses dengan Statistical Process Control (SPC-EWMA, CUSUM). Jurnal SIMETRIS, Vol. 8, No. 2, 449-455. DOI: 10.24176/simet.v8i2.1205

Zhang, Y., et al. (2023). Computational Fluid Dynamics Analysis of Temperature Uniformity in Batch Annealing Furnaces. Journal of Thermal Science and Engineering Applications, 15(3), 031005. DOI: 10.1115/1.4056142

Kumar, R., & Patel, V.K. (2022). Residual Oil Evaporation Mechanisms in Thin-Gauge Aluminum Foils During Annealing. Materials Chemistry and Physics, 291, 126732. DOI: 10.1016/j.matchemphys.2022.126732

Liu, X., et al. (2023). Optimization of Heat Transfer in Industrial Furnaces Using Multiphysics Simulation. International Journal of Heat and Mass Transfer, 201, 123642. DOI: 10.1016/j.ijheatmasstransfer.2022.123642

European Aluminium Association. (2022). Advanced Annealing Technologies for Thin-Gauge Aluminium Products. EAA Technical Report Series No. 22-05.

Wang, L., et al. (2021). Defect Control in Pharmaceutical-Grade Aluminium Foils: Surface Wettability and Adhesion. Applied Surface Science, 564, 150402. DOI: 10.1016/j.apsusc.2021.150402

Chen, S., & Gupta, M. (2023). Dynamic Modelling of Heat Treatment Processes Using Machine Learning-CFD Hybrid Approach. Journal of Manufacturing Systems, 68, 198-210. DOI: 10.1016/j.jmsy.2023.02.005

Ibrahim, A.M., et al. (2022). Vacuum Annealing: Effects on Microstructure and Surface Properties of AA1235 Alloy. Vacuum, 203, 111281. DOI: 10.1016/j.vacuum.2022.111281

Tang, J., et al. (2021). Coolant Oil Residual Analysis in Rolled Aluminium Using FTIR Spectroscopy. Tribology International, 163, 107188. DOI: 10.1016/j.triboint.2021.107188

Kim, H., & Park, S. (2023). Energy-Efficient Annealing: Thermal Insulation Materials for Industrial Furnaces. Energy Conversion and Management, 276, 116552. DOI: 10.1016/j.enconman.2022.116552

Springer Handbook Series. (2022). Advanced Materials Processing: Vol. 7. Aluminium Rolling and Finishing Technologies (2nd ed.). Springer. ISBN: 978-3-031-15232-4

García, E., et al. (2020). Real-Time Monitoring of Metal Temperature Gradients in Batch Annealing. Journal of Process Control, 94, 1-12. DOI: 10.1016/j.jprocont.2020.07.003

Zhang, B., et al. (2022). Computational Optimization of Airflow Distribution in Box-Type Annealing Furnaces. Case Studies in Thermal Engineering, 39, 102439. DOI: 10.1016/j.csite.2022.102439

Ozturk, S., et al. (2019). Residual Stress Reduction in Cold-Rolled Aluminium Foils via Modified Annealing Cycles. Materials & Design, 182, 108045. DOI: 10.1016/j.matdes.2019.108045

ASM Handbook Vol. 4J. (2021). Heat Treatment of Nonferrous Alloys. ASM International. ISBN: 978-1-62708-388-5

Li, Q., et al. (2023). Machine Learning-Based Prediction of Wettability Defects in Annealed Aluminium Foils. Journal of Intelligent Manufacturing. DOI: 10.1007/s10845-023-02106-3

Downloads

Published

2025-07-30

How to Cite

Widodo, B. S., & Wahyuono, R. A. (2025). Analisis Termodinamika dan Perpindahan Panas berbasis Computational Fluid Dynamics (CFD) untuk Optimisasi Anneling Furnace Aluminium Foil . Impression : Jurnal Teknologi Dan Informasi, 4(2), 360–372. https://doi.org/10.59086/jti.v4i3.1009

Issue

Section

Articles